...
【24h】

Hidden Gauss-Markov Models for Signal Classification

机译:Hidden Gauss-Markov Models for Signal Classification

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Continuous-state hidden Markov models (CS-HMMs) are developed as a tool for signal classification. Analogs of the Baum, Viterbi, and Baum-Welch algorithms are formulated for this class of models. The CS-HMM algorithms are then specialized to hidden Gauss-Markov models (HGMMs) with linear Gaussian state-transition and output densities. A new Gaussian refactorization lemma is used to show that the Baum and Viterbi algorithms for HGMMs are implemented by two different formulations of the fixed-interval Kalman smoother. The measurement likelihoods obtained from the forward pass of the HGMM Baum algorithm and from the Kalman-filter innovation sequence are shown to be equal. A direct link between the Baum-Welch training algorithm and an existing expectation-maximization (EM) algorithm for Gaussian models is demonstrated. A new expression for the cross covariance between time-adjacent states in HGMMs is derived from the off-diagonal block of the conditional joint covariance matrix. A parameter invariance structure is noted for the HGMM likelihood function. CS-HMMs and HGMMs are extended to incorporate mixture densities for the a priori density of the initial state. Application of HGMMs to signal classification is demonstrated with a three-class test simulation.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号