...
首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Numerical Investigation of Multistage Viscous Micropump Configurations
【24h】

Numerical Investigation of Multistage Viscous Micropump Configurations

机译:Numerical Investigation of Multistage Viscous Micropump Configurations

获取原文
获取原文并翻译 | 示例
           

摘要

The viscous micropump consists of a cylinder placed eccentrically inside a microchannel, where the rotor axis is perpendicular to the channel axis. When the cylinder rotates, a net force is transferred to the fluid because of the unequal shear stresses on the upper and lower surfaces of the rotor. Consequently, this causes the surrounding fluid in the channel to displace toward the microchannel outlet. The simplicity of the viscous micropump renders it ideal for micropumping; however, previous studies have shown that its performance is still less than what is required for various applications. The performance of the viscous micropump, in terms of flow rate and pressure capabilities, may be enhanced by implementing more than one rotor into the configuration either horizontally or vertically oriented relative to each other. This is analogous to connecting multiple pumps in parallel or in series. The present study will numerically investigate the performance of various configurations of the viscous micropumps with multiple rotors, namely, the dual-horizontal rotor, triple-horizontal rotor, symmetrical dual-vertical rotor, and eight-shaped dual-vertical rotor. The development of drag-and-lift forces with time, as well as the viscous resisting torque on the cylinders were studied. In addition, the corresponding drag, lift, and moment coefficients were calculated. The flow pattern and pressure distribution on the cylinders' surfaces are also included in the study. Results show that the symmetrical dual-vertical rotor configuration yields the best efficiency and generates the highest flow rate. The steady-state performance of the single-stage micropump was compared to the available experimental and numerical data and found to be in very good agreement. This work provides a foundation for future research on the subject of fluid phenomena in viscous micropumps.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号