...
首页> 外文期刊>International journal of high performance computing applications >Programming the Adapteva Epiphany 64-core network-on-chip coprocessor
【24h】

Programming the Adapteva Epiphany 64-core network-on-chip coprocessor

机译:Programming the Adapteva Epiphany 64-core network-on-chip coprocessor

获取原文
获取原文并翻译 | 示例
           

摘要

Energy efficiency is the primary impediment in the path to exascale computing. Consequently, the high-performance computing community is increasingly interested in low-power high-performance embedded systems as building blocks for large-scale high-performance systems. The Adapteva Epiphany architecture integrates low-power RISC cores on a 2D mesh network and promises up to 70 GFLOPS/Watt of theoretical performance. However, with just 32KB of memory per eCore for storing both data and code, programming the Epiphany system presents significant challenges. In this paper we evaluate the performance of a 64-core Epiphany system with a variety of basic compute and communication micro-benchmarks. Further, we implemented two well known application kernels, 5-point star-shaped heat stencil with a peak performance of 65.2 GFLOPS and matrix multiplication with 65.3 GFLOPS in single precision across 64 Epiphany cores. We discuss strategies for implementing high-performance computing application kernels on such memory constrained low-power devices and compare the Epiphany with competing low-power systems. With future Epiphany revisions expected to house thousands of cores on a single chip, understanding the merits of such an architecture is of prime importance to the exascale initiative.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号