...
首页> 外文期刊>The Journal of Chemical Physics >Reliable emulation of complex functionals by active learning with error control
【24h】

Reliable emulation of complex functionals by active learning with error control

机译:Reliable emulation of complex functionals by active learning with error control

获取原文
获取原文并翻译 | 示例
           

摘要

Statistical emulator is a surrogate model of complex physical models to drastically reduce the computational cost. Its successful implementation hinges on the accurate representation of the nonlinear response surface with a high-dimensional input space. Conventional "space-filling " designs, including random sampling and Latin hypercube sampling, become inefficient as the dimensionality of the input variables increases and are problematic in the functional space. To address this fundamental challenge, we develop a reliable emulator for predicting complex functionals by active-learning with error control (ALEC) that is applicable to infinite-dimensional mapping with high-fidelity predictions and a controlled predictive error. The computational efficiency has been demonstrated by emulating the classical density functional theory (cDFT) calculations, a statistical-mechanical method widely used in modeling the equilibrium properties of complex molecular systems. We show that the ALEC emulator is much more accurate than conventional Gaussian processes emulators based on "space-filling " designs, another widely used active learning approach, and computationally more efficient than direct cDFT calculations. The ALEC framework can be a reliable building block for emulating expensive functionals, because of its reduced computational cost, controlled predictive error, and fully automatic features. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号