首页> 外文期刊>Pacific Journal of Optimization >AN ADAPTIVE l(1)-l(2)-TYPE MODEL WITH HIERARCHIES FOR SPARSE SIGNAL RECONSTRUCTION PROBLEM
【24h】

AN ADAPTIVE l(1)-l(2)-TYPE MODEL WITH HIERARCHIES FOR SPARSE SIGNAL RECONSTRUCTION PROBLEM

机译:AN ADAPTIVE l(1)-l(2)-TYPE MODEL WITH HIERARCHIES FOR SPARSE SIGNAL RECONSTRUCTION PROBLEM

获取原文
获取原文并翻译 | 示例
           

摘要

This paper addresses solving an adaptive l(1)-l(2) regularized model in the framework of hierarchical convex optimization for sparse signal reconstruction. This is realized in the framework of bi-level convex optimization, we can also turn the challenging bi-level model into a single-level constrained optimization problem through some priori information. The l(1)-l(2 )norm regularized least-square sparse optimization is also called the elastic net problem, and numerous simulation and real-world data show that the elastic net often outperforms the Lasso. However, the elastic net is suitable for handling Gaussian noise in most cases. In this paper, we propose an adaptive and robust model for reconstructing sparse signals, say l(p-)l(1)-l(2), where the l(p)-norm with p >= 1 measures the data fidelity and l(1)-l(2)-term measures the sparsity. This model is robust and flexible in the sense of having the ability to deal with different types of noises. To solve this model, we employ an alternating direction method of multipliers (ADMM) based on introducing one or a pair of auxiliary variables. From the point of view of numerical computation, we use numerical experiments to demonstrate that both of our proposed model and algorithms outperform the Lasso model solved by ADMM on sparse signal reconstruction problem.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号