首页> 外文期刊>Journal of Energy Storage >Morphology-dependent solvothermal synthesis of spinel NiCo2O4 nanostructures for enhanced energy storage device application
【24h】

Morphology-dependent solvothermal synthesis of spinel NiCo2O4 nanostructures for enhanced energy storage device application

机译:Morphology-dependent solvothermal synthesis of spinel NiCo2O4 nanostructures for enhanced energy storage device application

获取原文
获取原文并翻译 | 示例
           

摘要

? 2022 Elsevier LtdSpinel NiCo2O4 is a remarkable electrode material for enhanced energy storage devices due to its unique tunable structure and shape. Herein, we have demonstrated a facile solvothermal approach to synthesize various nanostructures such as nanoparticles, nanoflowers self-assembled with nanoflakes, nanorods, and nanosheets of spinel NiCo2O4. The influence of solvents (such as water, ethanol, water-ethanol, and ethylene glycol etc.), urea, the molar concentration of reactant precursors Ni(NO3)2·6H2O and Co(NO3)2·6H2O, and calcination temperatures are varied for designing the various nanostructures of NiCo2O4. Further all electrode materials are tested for supercapacitor application. Among all as-synthesized nickel cobaltites, NiCo2O4 nanoflowers (NC-2) is found to be the best electrode materials for supercapacitor application with a high specific capacitance (415 F/g at 2 mV/s scan rate and 144.3 F/g at 1 A/g current density) under 1 M Na2SO4 electrolyte using three-electrode system. The higher specific capacitance of NiCo2O4 nanoflowers is attributed to its larger surface area, the higher number of active sites, and lower charge transfer resistance. Moreover, the NiCo2O4 nanoflowers electrodes were further fabricated for a two-electrode symmetric supercapacitor device and showed a specific capacitance of 80.2 F/g at 1 A/g current density and exhibit higher energy density of 17.4 Wh/kg with a power density of 329.7 W/kg. The fabricated symmetric device of NiCo2O4 nanoflowers displays outstanding durability upto 10,000 continuous charge-discharge cycles at 5 A/g.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号