首页> 外文期刊>Geoscience journal >Crack initiation and propagation thresholds of Hwangdeung granite under elevated temperature
【24h】

Crack initiation and propagation thresholds of Hwangdeung granite under elevated temperature

机译:Crack initiation and propagation thresholds of Hwangdeung granite under elevated temperature

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we investigated the effect of high temperature on the mechanical behavior of Hwangdeung granite in Korea. Uniaxial compression and Brazilian tests were performed under temperatures ranging from 20 degrees C to 250 degrees C. The development of the thermally induced microcracks was observed utilizing a scanning electron microscope (SEM). The target temperature was chosen for rock engineering projects, such as high-level radioactive waste disposal, enhanced geothermal energy, and thermal energy storage. Considering the long-term strength and fracture process associated with crack development, we examined the temperature dependence of crack initiation and propagation thresholds and conventional strength and deformation parameters, as well as the stress-strain relation under high temperature. Compressive strength, tensile strength, and Young's modulus decreased with increasing temperature, particularly at temperatures above 100 degrees C, and Poisson's ratio decreased linearly. The changes in the tensile strength and elastic constants were more pronounced than those in uniaxial compressive strength. The stress-strain curves revealed that the thermal effect on deformation, rather than strength, was evident. Microscopic observations of the heated rock samples have revealed that high temperature promoted the interaction and networking of pre-existing and thermally induced cracks, resulting in microstructural damage before loading. We determined the crack closure stress, crack initiation stress, and crack damage stress under the respective temperatures by analyzing the stress-strain curves. An increase in temperature increased the crack closure stress and reduced the crack initiation stress, resulting in a decreased elastic range; the former increased by 12.1 MPa as the temperature increased from 20 degrees C to 250 degrees C, and the latter significantly reduced by 25.1 MPa. This finding suggests that the mechanical behavior of rocks or rock masses under high-temperature conditions, particularly at low-stress levels, is uncertain and cannot be approximated with standard material properties. No systemic relation was detected between temperature and crack damage stress; however, the volumetric strain at the crack damage stress increased consistently with temperature.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号