...
首页> 外文期刊>Biological trace element research. >Children Environmentally Exposed to Agrochemicals in Rural Areas Present Changes in Oxidative Status and DNA Damage
【24h】

Children Environmentally Exposed to Agrochemicals in Rural Areas Present Changes in Oxidative Status and DNA Damage

机译:Children Environmentally Exposed to Agrochemicals in Rural Areas Present Changes in Oxidative Status and DNA Damage

获取原文
获取原文并翻译 | 示例
           

摘要

Rural children are exposed to several chemicals. This study evaluated the environmental co-exposure of rural children to cholinesterase inhibitor insecticides and metals/metalloids, and the resulting oxidative stress and DNA damage. Seventy-two children (5 to 16 years old) were studied at two different moments: period 1, when agrochemicals were less used, and period 2, when agrochemicals were extensively used in agriculture. Biomonitoring was performed by evaluating butyrylcholinesterase (BuChE) activity in serum; arsenic (As), chromium (Cr), lead (Pb), and nickel (Ni) levels in blood; malondialdehyde (MDA) in plasma; glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) activities in whole blood; non-protein thiol levels in erythrocytes; and micronuclei (MN) assay in exfoliated buccal cells. Cr and As levels were higher than the reference values in both periods, and Ni levels were higher than the reference values in period 2 alone. BuChE activity was inhibited in period 2 compared with period 1. In period 2, there was an increase in endogenous antioxidants and a decrease in MDA, probably demonstrating a compensatory mechanism as a response to increasing xenobiotics. Also in period 2, the MN frequency increased and BuChE and As were positively associated, suggesting co-exposure. On the other hand, in period 1, it was observed that Cr, Ni, and Pb blood levels were negatively associated with GSH-Px and GST, while MDA was positively associated with As levels. Our findings demonstrated an imbalance in endogenous antioxidants, contributing to genotoxicity and lipoperoxidation, probably in response to exposure to xenobiotics, especially carcinogenic elements (Cr, As, and Ni).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号