...
首页> 外文期刊>Biological trace element research. >The Dietary Supplementation of Copper and Zinc Nanoparticles Improves Health Condition of Young Dairy Calves by Reducing the Incidence of Diarrhoea and Boosting Immune Function and Antioxidant Activity
【24h】

The Dietary Supplementation of Copper and Zinc Nanoparticles Improves Health Condition of Young Dairy Calves by Reducing the Incidence of Diarrhoea and Boosting Immune Function and Antioxidant Activity

机译:The Dietary Supplementation of Copper and Zinc Nanoparticles Improves Health Condition of Young Dairy Calves by Reducing the Incidence of Diarrhoea and Boosting Immune Function and Antioxidant Activity

获取原文
获取原文并翻译 | 示例
           

摘要

This study was conducted to evaluate the effect of nano copper (nano Cu) and nano zinc (nano Zn) supplementation on the biomarkers of immunity and antioxidant and health status attributes in young dairy calves. Twenty-four young cattle calves were randomly assigned into four groups (6 calves per group) on a body weight and age basis for a period of 120 days. The feeding regimen was the same in all the groups except that these were supplemented with 0.0 mg nano Cu and nano Zn (control), 10 mg nano Cu (Cu-nano(10)), 32 mg nano Zn (nanoZn(32)), and a combination of nano Cu and nano Zn (Cu-nano(10 )+ Zn-nano(32)) per kg dry matter (DM) basis in four respective groups. Supplementation of nano Cu along with nano Zn improves immune response which was evidenced from higher immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), total immunoglobulin (TIg), and Zn sulphate turbidity (ZST) units and lower plasma concentrations of tumour necrosis factor-alpha (TNF-alpha) and cortisol in the nanoCu10 + nanoZn32 group. There was no effect of treatment on the plasma concentrations of immunoglobulin E (IgE) and interferon-gamma (IFN-gamma). Antioxidant status was also better in the nanoCu10 + nanoZn32 group as evidenced by lower concentrations of malondialdehyde (MDA) and higher activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), ceruloplasmin (Cp), and total antioxidant status (TAS). However, treatment did not exert any effect on catalase (CAT) activity. Although the nano Cu or nano Zn supplementation, either alone or in combination, did not exert any effect on growth performance or body condition score (BCS), the frequency of diarrhoea and incidence of diarrhoea were lower, while faecal consistency score (FCS) and attitude score were better in the Cu-nano(10) + Zn-nano(32) groups. In the control group, one calf was found affected with joint illness and two calves were found affected with navel illness. During the experimental period, none of the calves in all four groups were found to be affected by pneumonia. The findings of this study revealed that dietary supplementation of nano Cu in combination with nano Zn improved the health status of young dairy calves by improving immunity and antioxidant status.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号