...
首页> 外文期刊>Analytical and bioanalytical chemistry >Simultaneous and quantitative monitoring transcription factors in human embryonic stem cell differentiation using mass spectrometry-based targeted proteomics
【24h】

Simultaneous and quantitative monitoring transcription factors in human embryonic stem cell differentiation using mass spectrometry-based targeted proteomics

机译:Simultaneous and quantitative monitoring transcription factors in human embryonic stem cell differentiation using mass spectrometry-based targeted proteomics

获取原文
获取原文并翻译 | 示例
           

摘要

Human embryonic stem cells (hESCs) can be self-propagated indefinitely in culture while holding the capacity to generate almost all cell types. Although this powerful differentiation ability of hESCs has become a potential source of cell replacement therapies, application of stem cells in clinical practice relies heavily on the exquisite control of their developmental fate. In general, an essential first step in differentiation is to exit the pluripotent state, which is precariously balanced and depends on a variety of factors, mainly centering on the core transcriptional mechanism. To date, much evidence has indicated that transcription factors such as Sox2, Oct4, and Nanog control the self-renewal and pluripotency of hESCs. Their expression displays a restricted spatial-temporal pattern and their small changes in level can significantly affect directed differentiation and the cell type derived. So far, few assays have been developed to monitor this process. Herein, we provided a mass spectrometry (MS)-based approach for simultaneous and quantitative monitoring of these transcription factors, in an attempt to provide insight into their contributions in hESC differentiation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号