...
首页> 外文期刊>Cell and Tissue Research >Human umbilical cord mesenchymal stem cells reconstruct the vaginal wall of ovariectomized Sprague-Dawley rats: implications for pelvic floor reconstruction
【24h】

Human umbilical cord mesenchymal stem cells reconstruct the vaginal wall of ovariectomized Sprague-Dawley rats: implications for pelvic floor reconstruction

机译:Human umbilical cord mesenchymal stem cells reconstruct the vaginal wall of ovariectomized Sprague-Dawley rats: implications for pelvic floor reconstruction

获取原文
获取原文并翻译 | 示例
           

摘要

Vaginal structural defects are involved in pelvic organ prolapse (POP). We tested whether mesenchymal stem cell (MSC) therapy can repair the weakened vaginal wall of POP patients as a novel POP treatment. Ninety-six ovariectomized rats were divided into 4 groups (n = 24/group): saline (sal), collagen (col), sal + MSC, and col + MSC groups. Two weeks after ovariectomy, rats received subepithelial injection of 0.3 ml saline, 0.3 ml collagen I gel, and 0.3 ml saline: 3 x 10(6) human umbilical cord mesenchymal stem cells (HUMSCs), or 0.3 ml collagen I gel: 3 x 10(6) HUMSCs into the anterior vaginal wall. Eight additional rats underwent in vivo bioluminescence imaging (BLI) to evaluate in vivo cell viability. The BLI signal disappeared within 1 week after MSC injection, and no in vivo MSC differentiation was found. Collagen I content was significantly lower at 4 and 12 weeks in the two MSC groups than in the sal and col groups, while collagen III was significantly higher (P < 0.001). The fraction of smooth muscle in the nonvascular muscularis increased significantly in the two MSC groups at 12 weeks (P < 0.001). ACTA2 mRNA in the col + MSC group was significantly higher than that in the sal group at 2 and 4 weeks (P = 0.042 and P = 0.040). mRNA levels of angiogenic factors (bFGF or VEGF) in the two MSC groups were significantly higher than those in the sal and col groups at different time points. HUMSCs normalized the fibromuscular structures of the vaginal wall of ovariectomized rats potentially through a paracrine effect.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号