首页> 外文期刊>International journal of circuit theory and applications >An active damping control strategy with improved transient performance for high‐frequency AC power distribution in intelligent vehicles
【24h】

An active damping control strategy with improved transient performance for high‐frequency AC power distribution in intelligent vehicles

机译:An active damping control strategy with improved transient performance for high‐frequency AC power distribution in intelligent vehicles

获取原文
获取原文并翻译 | 示例
           

摘要

Summary High‐frequency AC (HFAC) LCLC resonant inverter has recently received more and more attention in power distribution system (PDS) of intelligent vehicles. However, LCLC resonance complicates the design of a current control loop and can even threaten the stability and transient performance of PDS. Active damping (AD) strategies based on the feedback of a single filter voltage or current have been shown to be effective and cost‐efficient method for attenuating resonant spikes. In this paper, a notch filter‐based AD (NFAD) control strategy is proposed to improve the stability and transient performance of PDS for intelligent vehicles. By sensing and feeding back the output resonance current of LCLC resonant inverter, the NFAD control strategy is then formulated to emulate a virtual impedance in order to improve the system phase margin and crossover frequency. Hence, the proposed control strategy can not only suppress the LCLC double resonance peaks but also effectively improve the transient performance of resonant inverter while guaranteeing the stability of the system. Finally, an experimental prototype was established and tested to verify the effectiveness of the proposed control strategy with a rated output power of 130?W, an operation frequency of 25?kHz, and a sinusoidal output voltage of 28?V (rms).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号