首页> 外文期刊>Journal of Glaciology >Discovery of argon in air-hydrate crystals in a deep ice core using scanning electron microscopy and energy-dispersive X-ray spectroscopy
【24h】

Discovery of argon in air-hydrate crystals in a deep ice core using scanning electron microscopy and energy-dispersive X-ray spectroscopy

机译:Discovery of argon in air-hydrate crystals in a deep ice core using scanning electron microscopy and energy-dispersive X-ray spectroscopy

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Tiny samples of ancient atmosphere in air bubbles within ice cores contain argon (Ar), which can be used to reconstruct past temperature changes. At a sufficient depth, the air bubbles are compressed by the overburden pressure under low temperature and transform into air-hydrate crystals. While the oxygen (O2) and nitrogen (N2) molecules have indeed been identified in the air-hydrate crystals with Raman spectroscopy, direct observational knowledge of the distribution of Ar at depth within ice sheet and its enclathration has been lacking. In this study, we applied scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to five air-hydrate crystals in the Greenland NEEM ice core, finding them to contain Ar and N. Given that Ar cannot be detected by Raman spectroscopy, the method commonly used for O2 and N2, the SEM-EDS measurement method may become increasingly useful for measuring inert gases in deep ice cores.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号