...
首页> 外文期刊>The Journal of Chemical Physics >Simulating the charging of cylindrical electrolyte-filled pores with the modified Poisson-Nernst-Planck equations
【24h】

Simulating the charging of cylindrical electrolyte-filled pores with the modified Poisson-Nernst-Planck equations

机译:Simulating the charging of cylindrical electrolyte-filled pores with the modified Poisson-Nernst-Planck equations

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding how electrolyte-filled porous electrodes respond to an applied potential is important to many electrochemical technologies. Here, we consider a model supercapacitor of two blocking cylindrical pores on either side of a cylindrical electrolyte reservoir. A stepwise potential difference 2 phi between the pores drives ionic fluxes in the setup, which we study through the modified Poisson-Nernst-Planck equations, solved with finite elements. We focus our discussion on the dominant timescales with which the pores charge and how these timescales depend on three dimensionless numbers. Next to the dimensionless applied potential phi, we consider the ratio R/R-b of the pore's resistance R to the bulk reservoir resistance R-b and the ratio r(p)/lambda of the pore radius r(p) to the Debye length lambda. We compare our data to theoretical predictions by Aslyamov and Janssen (phi), Posey and Morozumi (R/R-b), and Henrique, Zuk, and Gupta (r(p)/lambda). Through our numerical approach, we delineate the validity of these theories and the assumptions on which they were based. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号