...
首页> 外文期刊>The Journal of Chemical Physics >The effect of chemical constitution on polyisoprene dynamics
【24h】

The effect of chemical constitution on polyisoprene dynamics

机译:The effect of chemical constitution on polyisoprene dynamics

获取原文
获取原文并翻译 | 示例
           

摘要

Polyisoprene (PI) melts have been studied, with most reports focusing on systems with high 1,4-cis content. In contrast, 1,4-trans PI homopolymers or random copolymers have seldom been examined, despite a handful of investigations suggesting a distinct dynamic behavior. Herein, we employ all-atom simulations to investigate the effect of chemical architecture on the dynamics of cis and trans-PI homopolymers, as well as copolymers. We examine the thermodynamic, conformational, and structural properties of the polymers and validate the performance of the models. We probe chain dynamics, revealing that cis-PI presents accelerated translation and reorientation modes relative to trans as recorded by the mean square displacement of the chain center-of-mass as well as by the characteristic times of the lower modes in a Rouse analysis. Interestingly, progressing to higher modes, we observe a reversal with trans units exhibiting faster dynamics. This was further confirmed by calculations of local carbon-hydrogen vector reorientation dynamics, which offer a microscopic view of segmental mobility. To obtain insight into the simulation trajectories, we evaluate the intermediate incoherent scattering function that supports a temperature-dependent crossover in relative mobility that extends over separations beyond the Kuhn-length level. Finally, we analyzed the role of non-Gaussian displacements, which demonstrate that cis-PI exhibits increased heterogeneity in dynamics over short-timescales in contrast to trans-PI, where deviations persist over times extending to terminal dynamics. Our all-atom simulations provide a fundamental understanding of PI dynamics and the impact of microstructure while providing important data for the design and optimization of PI-based materials.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号