...
首页> 外文期刊>The Journal of Chemical Physics >Self-interaction-corrected Kohn-Sham effective potentials using the density-consistent effective potential method
【24h】

Self-interaction-corrected Kohn-Sham effective potentials using the density-consistent effective potential method

机译:Self-interaction-corrected Kohn-Sham effective potentials using the density-consistent effective potential method

获取原文
获取原文并翻译 | 示例
           

摘要

Density functional theory (DFT) and beyond-DFT methods are often used in combination with photoelectron spectroscopy to obtain physical insights into the electronic structure of molecules and solids. The Kohn-Sham eigenvalues are not electron removal energies except for the highest occupied orbital. The eigenvalues of the highest occupied molecular orbitals often underestimate the electron removal or ionization energies due to the self-interaction (SI) errors in approximate density functionals. In this work, we adapt and implement the density-consistent effective potential method of Kohut, Ryabinkin, and Staroverov [J. Chem. Phys. 140, 18A535 (2014)] to obtain SI-corrected local effective potentials from the SI-corrected Fermi-Lowdin orbitals and density in the Fermi-Lowdin orbital self-interaction correction scheme. The implementation is used to obtain the density of states (photoelectron spectra) and HOMO-LUMO gaps for a set of molecules and polyacenes. Good agreement with experimental values is obtained compared to a range of SI uncorrected density functional approximations.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号