...
首页> 外文期刊>The Journal of Chemical Physics >A numerical investigation of analyte size effects in nanopore sensing systems
【24h】

A numerical investigation of analyte size effects in nanopore sensing systems

机译:A numerical investigation of analyte size effects in nanopore sensing systems

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the ionic current modulation in DNA nanopore translocation setups by numerically solving the electrokinetic mean-field equations for an idealized model. Specifically, we study the dependence of the ionic current on the relative length of the translocating molecule. Our simulations show a significantly smaller ionic current for DNA molecules that are shorter than the pore at low salt concentrations. These effects can be ascribed to the polarization of the ion cloud along the DNA that leads to an opposing electric dipole field. Our results for DNA shine light on the observed discrepancy between infinite pore models and experimental data on various sized DNA complexes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号