...
首页> 外文期刊>Nanoscale >Three-dimensional Ni foam supported NiCoO2@Co3O4 nanowire-on-nanosheet arrays with rich oxygen vacancies as superior bifunctional catalytic electrodes for overall water splitting
【24h】

Three-dimensional Ni foam supported NiCoO2@Co3O4 nanowire-on-nanosheet arrays with rich oxygen vacancies as superior bifunctional catalytic electrodes for overall water splitting

机译:Three-dimensional Ni foam supported NiCoO2@Co3O4 nanowire-on-nanosheet arrays with rich oxygen vacancies as superior bifunctional catalytic electrodes for overall water splitting

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Earth abundant transition metal oxide (EATMO)-based bifunctional catalysts for overall water splitting are highly desirable, but their performance is far from satisfactory due to low intrinsic activities of EATMOs toward electrocatalysis of both oxygen and hydrogen evolution reactions and poor electron transfer and transport capabilities. A three-dimensional (3-D) Ni-foam-supported NiCoO2@Co3O4 nanowire-on-nanosheet heterostructured array with rich oxygen vacancies has been synthesized, showing OER activity superior to most reported catalysts and even much higher than Ru and Ir-based ones and HER activity among the highest reported for non-noble-metal-based catalysts. The excellent activities are ascribed to the highly dense, ultrathin nanowire arrays epitaxially grown on an interconnected layered nanosheet array greatly facilitating electron transfer and providing numerous electrochemically accessible active sites and the high content of oxygen vacancies on nanowires greatly promoting OER and HER. When adopted as bifunctional electrodes for overall water splitting, this heterostructure shows an overvoltage (at 10 mA cm−2) lower than most reported electrolyzers and high stability. This work not only creates a 3-D EATMO-based integrated heterostructure as a low-cost, highly efficient bifunctional catalytic electrode for water splitting, but also provides a novel strategy to use unique heteronanostructures with rich surface defects for synergistically enhancing electrocatalytic activities.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号