...
首页> 外文期刊>The Journal of Chemical Physics >Kinetic control of competing nuclei in a dimer lattice-gas model
【24h】

Kinetic control of competing nuclei in a dimer lattice-gas model

机译:Kinetic control of competing nuclei in a dimer lattice-gas model

获取原文
获取原文并翻译 | 示例
           

摘要

Nucleation is a key step in the synthesis of a new material from a solution. The well-established lattice-gas models can be used to gain insight into the basic physics of nucleation pathways involving a single nucleus type. In many situations, a solution is supersaturated with respect to more than one precipitating phase. This can generate a population of both stable and metastable nuclei on similar timescales and, hence, complex nucleation pathways involving a competition between the two. In this study, we introduce a lattice-gas model based on two types of interacting dimers representing the particles in a solution. Each type of dimer nucleates to a specific space-filling structure. Our model is tuned such that stable and metastable phases nucleate on a similar timescale. Either structure may nucleate first, with a probability sensitive to the relative rate at which a solute is replenished from their respective reservoirs. We calculate these nucleation rates via forward flux sampling and demonstrate how the resulting data can be used to infer the nucleation outcome and pathway. Possibilities include direct nucleation of the stable phase, domination of long-lived metastable crystallites, and pathways in which the stable phase nucleates only after multiple post-critical nuclei of the metastable phase have appeared. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号