...
首页> 外文期刊>Applied and Environmental Microbiology >3-Hydroxybutyrate Derived from Poly-3-Hydroxybutyrate Mobilization Alleviates Protein Aggregation in Heat-Stressed Herbaspirillum seropedicae SmR1
【24h】

3-Hydroxybutyrate Derived from Poly-3-Hydroxybutyrate Mobilization Alleviates Protein Aggregation in Heat-Stressed Herbaspirillum seropedicae SmR1

机译:3-Hydroxybutyrate Derived from Poly-3-Hydroxybutyrate Mobilization Alleviates Protein Aggregation in Heat-Stressed Herbaspirillum seropedicae SmR1

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Under conditions of carbon starvation or thermal, osmotic, or oxidative shock, mutants affected in the synthesis or mobilization of poly-3-hydroxybutyrate (PHB) are known to survive less well. It is still unclear if the synthesis and accumulation of PHB are sufficient to protect bacteria against stress conditions or if the stored PHB has to be mobilized. Here, we demonstrated that mobilization of PHB in Herbaspirillum seropedicae SmR1 was heat-shock activated at 45 degrees C. In situ proton (H-1) nuclear magnetic resonance spectroscopy (i.e., H-1-nuclear magnetic resonance) showed that heat shock increased amounts of 3-hydroxybutyrate (3HB) only in H. seropedicae strains able to synthesize and mobilize PHB. H. seropedicae SmR1 mutants unable to synthesize or mobilize PHB were more susceptible to heat shock and survived less well than the parental strain. When 100 mM 3-hydroxybutyrate was added to the medium, the Delta phaC1 strain (an H. seropedicae mutant unable to synthesize PHB) and the double mutant with deletion of both phaZ1 and phaZ2 (i.e., Delta phaZ1.2) (unable to mobilize PHB) showed partial rescue of heat adaptability (from 0% survival without 3HB to 40% of the initial viable population). Addition of 200 mM 3HB before the imposition of heat shock reduced protein aggregation to 15% in the Delta phaC1 mutant and 12% in the Delta phaZ1.2 mutant. We conclude that H. seropedicae SmR1 is naturally protected by 3HB released by PHB mobilization, while mutants unable to generate large amounts of 3HB under heat shock conditions are less able to cope with heat damage.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号