...
首页> 外文期刊>IEEE Journal on Selected Areas in Communications >Pruning and Quantizing Neural Belief Propagation Decoders
【24h】

Pruning and Quantizing Neural Belief Propagation Decoders

机译:Pruning and Quantizing Neural Belief Propagation Decoders

获取原文
获取原文并翻译 | 示例
           

摘要

We consider near maximum-likelihood (ML) decoding of short linear block codes. In particular, we propose a novel decoding approach based on neural belief propagation (NBP) decoding recently introduced by Nachmani &italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"&et al.&/italic& in which we allow a different parity-check matrix in each iteration of the algorithm. The key idea is to consider NBP decoding over an overcomplete parity-check matrix and use the weights of NBP as a measure of the importance of the check nodes (CNs) to decoding. The unimportant CNs are then pruned. In contrast to NBP, which performs decoding on a given &italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"&fixed&/italic& parity-check matrix, the proposed pruning-based neural belief propagation (PB-NBP) typically results in a different parity-check matrix in each iteration. For a given complexity in terms of CN evaluations, we show that PB-NBP yields significant performance improvements with respect to NBP. We apply the proposed decoder to the decoding of a Reed-Muller code, a short low-density parity-check (LDPC) code, and a polar code. PB-NBP outperforms NBP decoding over an overcomplete parity-check matrix by 0.27–0.31 dB while reducing the number of required CN evaluations by up to 97%. For the LDPC code, PB-NBP outperforms conventional belief propagation with the same number of CN evaluations by 0.52 dB. We further extend the pruning concept to offset min-sum decoding and introduce a pruning-based neural offset min-sum (PB-NOMS) decoder, for which we jointly optimize the offsets and the quantization of the messages and offsets. We demonstrate performance 0.5 dB from ML decoding with 5-bit quantization for the Reed-Muller code.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号