...
首页> 外文期刊>Journal of computational science >Memory-efficient emulation of physical tabular data using quadtree decomposition
【24h】

Memory-efficient emulation of physical tabular data using quadtree decomposition

机译:Memory-efficient emulation of physical tabular data using quadtree decomposition

获取原文
获取原文并翻译 | 示例
           

摘要

Computationally expensive functions are sometimes replaced in simulations with an emulator that approx-imates the true function (e.g., equations of state, wavelength-dependent opacity, or composition-dependent materials properties). For functions that have a constrained domain of interest, this can be done by discretizing the domain and performing a local interpolation on the tabulated function values of each local domain. For these so-called tabular data methods, the method of discretizing the domain and mapping the input space to each subdomain can drastically influence the memory and computational costs of the emulator. This is especially true for functions that vary drastically in different regions. We present a method for domain discretization and mapping that utilizes quadtrees, which results in significant reductions in the size of the emulator with minimal increases to computational costs or loss of global accuracy. We apply our method to the electron-positron Helmholtz free energy equation of state and show over an order of magnitude reduction in memory costs for reasonable levels of numerical accuracy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号