首页> 外文期刊>Modelling and simulation in materials science and engineering >Multiferroic ground states in free standing perovskite-based nanodots: a density functional theory study
【24h】

Multiferroic ground states in free standing perovskite-based nanodots: a density functional theory study

机译:Multiferroic ground states in free standing perovskite-based nanodots: a density functional theory study

获取原文
获取原文并翻译 | 示例
           

摘要

We use density functional theory to investigate the possibility of polar and multiferroic states in free-standing, perovskite-based nanodots at the atomic limit of miniaturization: single unit cells with terminations which allow centro-symmetry. We consider both A-O and B-O-2 terminations for three families of nanodots: (i) A = Ba with B = Ti, Zr, and Hf; (ii) A = Ca and Sr with B = Ti; and (iii) A = Na and K with B = Nb. We find all A-O terminated dots to be non-polar and to exhibit cubic symmetry (except for K8NbO6), regardless of the presence of ferroelectricity in the bulk. In contrast, all the B-O-2 terminated nanodots considered relax to a non-cubic ground state. Rather surprisingly, all of these structures exhibit polar ground states (except NaNb8O12). We propose a new structural parameter, the cluster tolerance factor (CTF), to determine whether a particular chemistry will result in a polar ground state nanodot, analogous to the Goldschmidt factor for bulk ferroelectrics. In addition, we find that all A-O terminated (except Ca8TiO6) and all polar B-O-2 terminated nanodots are magnetic, where none show magnetism in the bulk. As with bulk systems, multiferroicity in the B-O-2 terminated dots originates from separation between spin density in peripheral B atoms and polarity primarily caused by the off-center central A atom. Our findings stress that surface termination plays a crucial role in determining whether ferroelectricity is completely suppressed in perovskite-based materials at their limit of miniaturization.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号