...
首页> 外文期刊>Applied and Environmental Microbiology >DNM1, a Dynamin-Related Protein That Contributes to Endocytosis and Peroxisome Fission, Is Required for the Vegetative Growth, Sporulation, and Virulence of Metarhizium robertsii
【24h】

DNM1, a Dynamin-Related Protein That Contributes to Endocytosis and Peroxisome Fission, Is Required for the Vegetative Growth, Sporulation, and Virulence of Metarhizium robertsii

机译:DNM1, a Dynamin-Related Protein That Contributes to Endocytosis and Peroxisome Fission, Is Required for the Vegetative Growth, Sporulation, and Virulence of Metarhizium robertsii

获取原文
获取原文并翻译 | 示例
           

摘要

Although dynamins and dynamin-related proteins (DRPs), a large GTPase superfamily, are involved in the budding of transport vesicles and division of organelles in eukaryotic cells, the function of these proteins in entomopathogenic fungi has not been reported to date. Here, DNM1, a DRP in Metarhizium robertsii, was characterized using gene disruption and complementation strategies. Mutant phenotype assays showed that the Delta Dnm1 strain displayed increased defects in radial growth (similar to 24%) and conidial production (similar to 42%) compared to those of the wild type (WT), and reduced conidiation levels were accompanied by the repression of several key conidiation-related genes, including flbA, wetA, and flbD. Additionally, mutant bioassays revealed that disruption of Dnm1 impaired the virulence (both topical inoculation and injection) of M. robertsii in the insect Galleria mellonella. Further analysis demonstrated that deleting Dnm1 in fungi suppressed the transcriptional levels of several virulence genes in the insect hemocoel. Moreover, we found that DNM1 colocalized with peroxisomes and mitochondria. Importantly, disruption of Dnm1 abolished normal fungal endocytosis, resulting in significantly decreased numbers of, as well as morphological changes in, peroxisomes. These findings indicate that deletion of Dnm1 causes significant changes in the vegetative growth, sporulation, and virulence of M. robertsii due to changes in cell function and peroxisomes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号