...
首页> 外文期刊>The Journal of Chemical Physics >Quantum nature of molecular vibrational quenching: Water-molecular hydrogen collisions
【24h】

Quantum nature of molecular vibrational quenching: Water-molecular hydrogen collisions

机译:Quantum nature of molecular vibrational quenching: Water-molecular hydrogen collisions

获取原文
获取原文并翻译 | 示例
           

摘要

Rates of conversions of molecular internal energy to and from kinetic energy by means of molecular collision allow us to compute collisional line shapes and transport properties of gases. Knowledge of ro-vibrational quenching rates is necessary to connect spectral observations to physical properties of warm astrophysical gasses, including exo-atmospheres. For a system of paramount importance in this context, the vibrational bending mode quenching of H2O by H-2, we show here that the exchange of vibrational to rotational and kinetic energy remains a quantum process, despite the large numbers of quantum levels involved and the large vibrational energy transfer. The excitation of the quantized rotor of the projectile is by far the most effective ro-vibrational quenching path of water. To do so, we use a fully quantum first-principles computation, potential and dynamics, converging it at all stages, in a full coupled channel formalism. We present here rates for the quenching of the first bending mode of ortho-H2O by ortho-H-2, up to 500 K, in a fully converged coupled channel formalism.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号