首页> 外文期刊>Biomechanics and modeling in mechanobiology >Nonlinear large deformation of a spherical red blood cell induced by ultrasonic standing wave
【24h】

Nonlinear large deformation of a spherical red blood cell induced by ultrasonic standing wave

机译:Nonlinear large deformation of a spherical red blood cell induced by ultrasonic standing wave

获取原文
获取原文并翻译 | 示例
           

摘要

A computational model is developed to investigate the nonlinear static deformation of a spherical (osmotically swollen) red blood cell (RBC) induced by ultrasonic standing wave. The ultrasonic standing wave can generate steady acoustic radiation stress to deform the cell, and in turn, the deformed cell reshapes the acoustic field. This is a real-time coupling problem between the acoustic field and the mechanical field. In the computational model, the acoustic radiation stress acting on the RBC membrane is modeled by adopting the nonviscous momentum flux theory. The RBC membrane is modeled as a hyperelastic shell considering the in-plane elasticity, bending elasticity, and surface tension of the membrane. The volume conservation constraint of the membrane sealing fluid is applied to ensure the osmotic balance of the membrane. To address this real-time coupling problem, the computational model is implemented by a finite element method algorithm. The numerical results are compared with the existing theoretical model and experimental data, and the strain hardening trend of the experimental data is successfully predicted, which verifies the accuracy and effectiveness of the computational model. The computational model can accurately extract the mechanical properties of cells from acoustic deformation experiments, which is helpful for the diagnosis of some human diseases.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号