...
首页> 外文期刊>The Journal of Chemical Physics >Atoms and interatomic bonding synergism inherent in molecular electronic wave functions
【24h】

Atoms and interatomic bonding synergism inherent in molecular electronic wave functions

机译:Atoms and interatomic bonding synergism inherent in molecular electronic wave functions

获取原文
获取原文并翻译 | 示例
           

摘要

The chemical model of matter consists of atoms held together by bonds. The success of this model implies that the physical interactions of the electrons and nuclei in molecules combine into compound interactions that create the bonding. In the quantum mechanical description, the modified atoms in molecules and the bonding synergism are contained in the molecular electronic wave function. So far, only part of this information has been recovered from the wave function. Notably, the atoms have remained unidentified in the wave function. One reason is that conventional energy decomposition analyses formulate separate model wave functions, independent of the actual wave function, to represent "prepared atoms " and preconceived interactions and, then, intuitively catenate the parts. In the present work, the embedded modified atoms and the inherent physical synergisms between them are determined by a unified derivation entirely from the actual molecular valence space wave function. By means of a series of intrinsic orbital and configurational transformations of the wave function, the energy of formation of a molecule is additively resolved in terms of intra-atomic energy changes, interference energies, and quasi-classical, non-classical, and charge-transfer Coulombic interactions. The analysis furnishes an algorithm for the quantitative resolution of the energy of formation, which enables analyses elucidating reaction energies. Published under an exclusive license by AIP Publishing.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号