...
首页> 外文期刊>The Journal of Chemical Physics >First-principles study of large-amplitude dynamic Jahn-Teller effects in vanadium tetrafluoride
【24h】

First-principles study of large-amplitude dynamic Jahn-Teller effects in vanadium tetrafluoride

机译:First-principles study of large-amplitude dynamic Jahn-Teller effects in vanadium tetrafluoride

获取原文
获取原文并翻译 | 示例
           

摘要

Transition metal tetrahalides are a class of highly symmetric molecules for which very few spectroscopic data exist. Exploratory ab initio calculations of electronic potential energy functions indicate that the equilibrium molecular geometries of the vanadium, niobium, and tantalum tetrafluorides (i.e., VF4, NbF4, and TaF4) exhibit strong distortions from the tetrahedral configuration in their electronic ground state (E-2) and first excited state (T-2(2)) along the nuclear displacement coordinates of e symmetry. The distortions result from the E x e and T-2 x e Jahn-Teller (JT) effects, respectively. In addition, there are weaker distortions in the T-2(2) state along the coordinates of t(2) symmetry due to the T-2 x t(2) JT effect. The description of the large-amplitude dynamics induced by these JT effects requires the construction of JT Hamiltonians beyond the standard model of JT theory, which is based on Taylor expansions up to second order in normal-mode displacements. These higher-order JT Hamiltonians were constructed in this work by expansions of the electronic potentials of the title molecule in terms of symmetry invariant polynomials in symmetry-adapted nuclear displacement coordinates for the bending modes of VF4. A multi-configuration electronic structure method was employed to determine the coefficients of these high-order polynomial expansions from first principles. Using these large-amplitude Jahn-Teller Hamiltonians, the vibronic spectra of VF4 were computed. The spectra illustrate the effects of large-amplitude fluxional nonadiabatic dynamics due to exceptionally strong E x e and T-2 x e JT couplings. In addition, the vibronic spectrum of the T-2 x (e + t(2)) JT effect, including the bending mode of t(2) symmetry, was computed. The spectrum displays strong inter-mode coupling effects exhibiting a vibronic structure, which is substantially different from that predicted by independent-mode approximation. These results represent the first ab initio study of dynamical Jahn-Teller effects in VF4. Published under license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号