...
首页> 外文期刊>The Journal of Chemical Physics >Scaled recoupling of chemical shift anisotropies at high magnetic fields under MAS with interspersed C-elements
【24h】

Scaled recoupling of chemical shift anisotropies at high magnetic fields under MAS with interspersed C-elements

机译:Scaled recoupling of chemical shift anisotropies at high magnetic fields under MAS with interspersed C-elements

获取原文
获取原文并翻译 | 示例
           

摘要

The power of chemical shift anisotropy (CSA) measurements for probing structure and dynamics of molecules has been long recognized. NMR pulse sequences that allow measurement of CSA values in an indirect dimension of a protein correlation spectrum have been employed for aliphatic groups, but for practical reasons, carbonyl functional groups have been little studied, despite the fact that carbonyls are expected to give particularly varied and informative CSA values. Specifically, the wide spectral widths of carbonyl tensors make their measurements difficult with typically attainable spectrometer settings. We present here an extended family of experiments that enable the recovery of static CSA lineshapes in an indirect dimension of magic angle spinning (MAS) solid-state NMR experiments, except for various real valued scaling factors. The experiment is suitable for uniformly labeled material, at moderate MAS rates (10 kHz-30 kHz) and at higher magnetic fields (nu (0H) > 600 MHz). Specifically, the experiments are based on pulse sequence elements from a previous commonly used pulse sequence for CSA measurement, recoupling of chemical shift anisotropy (ROCSA), while modification of scaling factors is achieved by interspersing different blocks of C-elements of the same Cnn1 cycle. Using experimental conditions similar to the parent ROCSA sequence, a CSA scaling factor between 0 and 0.272 can be obtained, thus allowing a useful practical range of possibilities in experimental conditions for measurement of larger CSA values. Using these blocks, it is also possible to make a constant-time CSA recoupling sequence. The effectiveness of this approach, fROCSA, is shown on model compounds 1-C-13-Gly, U-C-13,N-15-l-His, and microcrystalline U-C-13,N-15-Ubiquitin.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号