首页> 外文期刊>European journal of control >Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems
【24h】

Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems

机译:Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to their superior modeling capabilities, gated Recurrent Neural Networks, such as Gated Recurrent Units (GRUs) and Long Short-Term Memory networks (LSTMs), have become popular tools for learning dynamical systems. This paper aims to discuss how these networks can be adopted for the synthesis of Internal Model Control (IMC) architectures. To this end, first a gated recurrent network is used to learn a model of the unknown input-output stable plant. Then, a controller gated recurrent network is trained to approximate the model inverse. The stability of these networks, ensured by means of a suitable training procedure, allows to guarantee the input-output closed-loop stability. The proposed scheme is able to cope with the saturation of the control variables, and can be deployed on low-power embedded controllers, as it requires limited online computations. The approach is then tested on the Quadruple Tank benchmark system and compared to alternative control laws, resulting in remarkable closed-loop performances. (c) 2022 European Control Association. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号