首页> 外文期刊>Biomechanics and modeling in mechanobiology >Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint
【24h】

Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint

机译:Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint

获取原文
获取原文并翻译 | 示例
           

摘要

A better understanding of the time-dependent biomechanical behaviour of the biphasic hip articular cartilage (AC) under physiological loadings is important to understand the onset of joint pathology and guide the clinical treatment. Current computational studies for the biphasic hip AC were usually limited to short-term duration or using elaborate loading. The present study aimed to develop a multiscale computational modelling to investigate the long-term biphasic behaviour of the hip AC under physiological loadings over multiple gait cycles. Two-scale computational modelling including a musculoskeletal model and a finite element model of the natural hip was created. These two models were then combined and used to investigate the biphasic behaviour of hip AC over 80 gait cycles. The results showed that the interstitial fluid pressure in the AC supported over 89% of the loading during gait. When the contact area was located at the AC centre, the contact pressure and fluid pressure increased over time from the first cycle to the 80th cycle, while when the contact area approached the edge, these pressures decreased first dramatically and then slowly over time. The peak stresses and strains in the solid matrix of the AC remained at a low level and increased over time from the first cycle to the 80th cycle. This study demonstrated that the long-term temporal variations of the biphasic behaviour of hip AC under physiological loadings are significant. The methodology has potentially important implications in the biomechanical studies of human cartilage and supporting the development of cartilage substitution.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号