首页> 外文期刊>Indoor and built environment: Journal of the International Society of the Built Environment >Hybrid emergency ventilation system for controlling inhaled contaminant dose in the case of chemical leakage
【24h】

Hybrid emergency ventilation system for controlling inhaled contaminant dose in the case of chemical leakage

机译:Hybrid emergency ventilation system for controlling inhaled contaminant dose in the case of chemical leakage

获取原文
获取原文并翻译 | 示例
           

摘要

In factories where high-risk chemical pollutants are treated, it is essential to anticipate response measures in the event of chemical pollutant leakage to minimize adverse health effects on workers. When high-risk liquid chemical pollutants are assumed to be leaked inside enclosed spaces, it becomes crucial to predict the non-uniform concentration distributions in enclosed spaces and evaluate the health impacts and risks of short-time exposure to prevent large-scale accidents. Therefore, we have developed an emergency ventilation system for controlling the inhaled contaminant dose of factory workers. In this study, assuming a worst-case scenario liquid chemical pollutant leak in an enclosed factory space, the advantages and performance of a hybrid ventilation system that combines displacement and push–pull type ventilation systems were numerically investigated. Installation of wall materials that facilitate photocatalytic oxidation (PCO) reactions for background passive concentration control was also discussed. Based on the demonstrative numerical analyses for a realistic factory space, push–pull type ventilation system was confirmed to effectively suppress chemical pollutant diffusion in enclosed spaces with a low ventilation rate. Wall materials with the PCO mechanism had a certain contribution to the control of peak concentration.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号