...
首页> 外文期刊>Nanoscale >Towards in situ determination of 3D strain and reorientation in the interpenetrating nanofibre networks of cuticle
【24h】

Towards in situ determination of 3D strain and reorientation in the interpenetrating nanofibre networks of cuticle

机译:对原位测定三维应变和在互穿nanofibre重新定位网络的表皮

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Determining the in situ 3D nano- and microscale strain and reorientation fields in hierarchical nano-composite materials is technically very challenging. Such a determination is important to understand the mechanisms enabling their functional optimization. An example of functional specialization to high dynamic mechanical resistance is the crustacean stomatopod cuticle. Here we develop a new 3D X-ray nanostrain reconstruction method combining analytical modelling of the diffraction signal, fibre-composite theory and in situ deformation, to determine the hitherto unknown nano- and microscale deformation mechanisms in stomatopod tergite cuticle. Stomatopod cuticle at the nanoscale consists of mineralized chitin fibres and calcified protein matrix, which form (at the microscale) plywood (Bouligand) layers with interpenetrating pore-canal fibres. We uncover anisotropic deformation patterns inside Bouligand lamellae, accompanied by load-induced fibre reorientation and pore-canal fibre compression. Lamination theory was used to decouple in-plane fibre reorientation from diffraction intensity changes induced by 3D lamellae tilting. Our method enables separation of deformation dynamics at multiple hierarchical levels, a critical consideration in the cooperative mechanics characteristic of biological and bioinspired materials. The nanostrain reconstruction technique is general, depending only on molecular-level fibre symmetry and can be applied to the in situ dynamics of advanced nanostructured materials with 3D hierarchical design.
机译:确定原位3 d纳米和微尺度应变和重新定位领域层次各种材料在技术上是非常具有挑战性的。使他们理解机制功能优化。专业化高动态机械电阻是甲壳纲动物口足类动物表皮。我们开发一个新的3 d x射线nanostrain重建方法结合分析造型的衍射信号,fibre-composite理论和原位变形,迄今未知的nano——确定在看看微尺度变形机制背板角质层。纳米级由矿化甲壳素纤维和钙化蛋白矩阵(在形式微尺度)胶合板(Bouligand)层穿插的孔道纤维。Bouligand内部各向异性变形模式薄片,伴随着load-induced纤维重新定位和孔道纤维压缩。薄板理论被用来分离平面从衍射强度纤维重新定位3 d片晶倾斜引起的变化。允许变形动力学的分离方法在多个层级,至关重要考虑的合作机制生物和bioinspired的特征材料。技术一般,只依赖分子水平上纤维可以应用对称和先进的原位动态纳米材料与3 d等级设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号