...
首页> 外文期刊>Nanoscale >Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries
【24h】

Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries

机译:隧道洞微粒子促进高容量锂离子的传输密度电池

获取原文
获取原文并翻译 | 示例
           

摘要

Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the electrolyte than that of nanoparticles. Therefore, it will be interesting to tunnel-holes in the high volumetric density microparticles to facilitate the reversible storage of lithium ions. Here, tunnel-like holes were generated in microparticles to dramatically increase the accessibility of the active materials to facilitate the lithium ion transfer. A plausible formation mechanism to explain the generation of tunnel-like holes was proposed based on time-course experiments and intensive characterization. Impressively, the as-prepared microbeads with tunnels demonstrated dramatically improved performance compared to the solid microbeads without tunnels in lithium ion storage. The microparticles with tunnels could achieve comparable electrochemical performances to those nanoparticles reported in the literature, suggesting that microparticles, properly tuned, could be promising candidates as negative electrodes for lithium-ion batteries and worthy of further studies. We also directly measured the volumetric density of the microparticles. We would like to highlight that a superior volumetric capacity of 514 mA h cm(-3) has been achieved. We hope to promote more frequent use of the unit mA h cm(-3) in addition to the conventional unit mA h g(-1) in the battery community.
机译:微尺度材料通常有更高的水龙头密度比随机的纳米颗粒。因此,微粒子被吸引关注应用程序的高容量密度对锂离子电池电极。然而,微粒子更长电解质扩散长度和锂离子迁移电解液比和更少的可访问性纳米粒子。有趣的tunnel-holes高体积密度微粒子促进锂离子的可逆的存储。大部分女性孔中生成微粒子显著增加可访问性的活性材料促进锂离子传输。形成机理来解释的提出了基于大部分漏洞时间进程实验和密集的鉴定。微磁与隧道显著了改进的性能相比,固体在锂离子微没有隧道存储。达到相应的电化学性能这些纳米颗粒的报道文学,这表明微粒,适当调整,可能是有前途的候选人负电极的锂离子电池值得进一步的研究。测量的体积密度微粒子。优越的体积容量514毫安h厘米(3)已经实现了。频繁使用的马h厘米(3)除了传统的单位马h g (1)电池的社区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号