...
首页> 外文期刊>The Journal of Chemical Physics >State predictive information bottleneck
【24h】

State predictive information bottleneck

机译:国家预测信息瓶颈

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations.
机译:理解分子动力学模拟产生的大量高维数据的能力在很大程度上取决于低维流形(由反应坐标或RC参数化)的知识,该流形通常区分相关的亚稳态,并捕捉相关的慢动力学。多年来,基于机器学习和人工智能的方法被提出来处理这种低维流形的学习,但它们经常被批评为与更传统和物理上可解释的方法脱节。为了解决这些问题,在这项工作中,我们提出了一种基于深度学习的状态预测信息瓶颈方法,从高维分子模拟轨迹中学习RC。我们从分析和数值上演示了在这种方法中学习到的RC如何与化学物理中的Committer相连接,并可用于准确识别过渡态。在这种方法中,一个关键的超参数是时间延迟,或者算法应该对未来的距离进行预测。通过对基准系统的仔细比较,我们证明了这种超参数选择可以有效地控制系统的亚稳态分类的粗粒度。因此,我们认为,这项工作代表着将基于深度学习的思想系统地应用于分子模拟的一个进步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号