...
首页> 外文期刊>The Journal of Chemical Physics >The effect of hydrogen bonds on the ultrafast relaxation dynamics of a BODIPY dimer
【24h】

The effect of hydrogen bonds on the ultrafast relaxation dynamics of a BODIPY dimer

机译:氢键对Bodipy二聚体超快弛豫动力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The influence of hydrogen bonds (H-bonds) in the structure, dynamics, and functionality of biological and artificial complex systems is the subject of intense investigation. In this broad context, particular attention has recently been focused on the ultrafast H-bond dependent dynamical properties in the electronic excited state because of their potentially dramatic consequences on the mechanism, dynamics, and efficiency of photochemical reactions and photophysical processes of crucial importance for life and technology. Excited-state H-bond dynamics generally occur on ultrafast time scales of hundreds of femtoseconds or less, making the characterization of associated mechanisms particularly challenging with conventional time-resolved techniques. Here, 2D electronic spectroscopy is exploited to shed light on this still largely unexplored dynamic mechanism. An H-bonded molecular dimer prepared by self-assembly of two boron-dipyrromethene dyes has been specifically designed and synthesized for this aim. The obtained results confirm that upon formation of H-bonds and the dimer, a new ultrafast relaxation channel is activated in the ultrafast dynamics, mediated by the vibrational motions of the hydrogen donor and acceptor groups. This relaxation channel also involves, beyond intra-molecular relaxations, an inter-molecular transfer process. This is particularly significant considering the long distance between the centers of mass of the two molecules. These findings suggest that the design of H-bonded structures is a particularly powerful tool to drive the ultrafast dynamics in complex materials.
机译:氢键(氢键)对生物和人工复杂系统的结构、动力学和功能性的影响是一个深入研究的主题。在这种广泛的背景下,最近人们特别关注电子激发态中与氢键相关的超快动力学性质,因为它们对光化学反应和对生命和技术至关重要的光物理过程的机制、动力学和效率具有潜在的重大影响。激发态氢键动力学通常发生在数百飞秒或更短的超快时间尺度上,这使得用传统的时间分辨技术表征相关机制尤其具有挑战性。在这里,2D电子光谱学被用来阐明这一仍在很大程度上未被探索的动力学机制。为此,我们专门设计并合成了一种由两种硼二吡咯烯染料自组装而成的氢键分子二聚体。所得结果证实,在氢键和二聚体形成后,一个新的超快弛豫通道在超快动力学中被激活,由氢供体和受体基团的振动运动介导。除了分子内的弛豫,这种弛豫通道还涉及分子间的转移过程。考虑到两个分子的质心之间的距离很长,这一点尤其重要。这些发现表明,氢键结构的设计是驱动复杂材料超快动力学的一个特别强大的工具。

著录项

  • 来源
    《The Journal of Chemical Physics》 |2021年第8期|共12页
  • 作者单位

    Univ Padua Dipartimento Sci Chim Via Marzolo 1 I-35131 Padua Italy;

    Univ Padua Dipartimento Sci Chim Via Marzolo 1 I-35131 Padua Italy;

    Ist Studio Mat Nanostrutturati CNR ISMN Dipartimento Sci Chim Biol Farmaceut &

    Ambientali Vle F Stagno DAlcontres 31 I-98166 Messina Italy;

    Univ Messina Dipartimento Sci Chim Biol Farmaceut &

    Ambientali Vle F Stagno DAlcontres 31 I-98166 Messina Italy;

    Univ Messina Dipartimento Sci Chim Biol Farmaceut &

    Ambientali Vle F Stagno DAlcontres 31 I-98166 Messina Italy;

    Ist Studio Mat Nanostrutturati CNR ISMN Dipartimento Sci Chim Biol Farmaceut &

    Ambientali Vle F Stagno DAlcontres 31 I-98166 Messina Italy;

    Univ Padua Dipartimento Sci Chim Via Marzolo 1 I-35131 Padua Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号