...
首页> 外文期刊>The Journal of Chemical Physics >Atomistic-scale insight into the polyethylene electrical breakdown: An eReaxFF molecular dynamics study
【24h】

Atomistic-scale insight into the polyethylene electrical breakdown: An eReaxFF molecular dynamics study

机译:原子制定洞察聚乙烯电击:Ereaxff分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Cross-linked polyethylene (XLPE) has been recognized as an outstanding insulator for high-voltage power cables due to its favorable structural integrity at high temperature, low moisture sensitivity, chemical resistance, and low rates of failure due to aging. However, the roles of by-products and amorphous regions generated during the XLPE production are not clearly known at the atomistic scale. In this study, we present an eReaxFF-based molecular dynamics simulation framework with an explicit electron description verified against density functional theory data to investigate the roles of XLPE by-products and processing variables such as density and voids on the time to dielectric breakdown (TDDB) of polyethylene (PE). Our simulation results indicate that an increase in density of PE increases the TDDB; however, adding a by-product with positive electron affinity such as acetophenone can reduce the TDDB. Furthermore, during the electrical breakdown in PE, electrons tend to migrate through voids when transferring from the anode to cathode. In comparison with neutral acetophenone, we find that the acetophenone radical anion can significantly reduce the energy barrier and the reaction energy of secondary chemical reactions.
机译:交联聚乙烯(XLPE)因其在高温下良好的结构完整性、低湿敏性、耐化学性和低老化失效率而被公认为高压电力电缆的优秀绝缘体。然而,XLPE生产过程中产生的副产物和无定形区域在原子尺度上的作用尚不清楚。在这项研究中,我们提出了一个基于eReaxFF的分子动力学模拟框架,通过密度泛函理论数据验证了明确的电子描述,以研究交联聚乙烯副产物和加工变量(如密度和空隙率)对聚乙烯(PE)介电击穿时间(TDDB)的作用。我们的模拟结果表明,PE密度的增加会增加TDDB;然而,添加具有正电子亲和力的副产物(如苯乙酮)可以降低TDDB。此外,在PE的电击穿过程中,当电子从阳极转移到阴极时,电子往往会通过空隙迁移。与中性苯乙酮相比,苯乙酮自由基阴离子能显著降低二次化学反应的能垒和反应能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号