首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Fault-Valve Behavior Estimated From Intensive Foreshocks and Aftershocks of the 2017 M 5.3 Kagoshima Bay Earthquake Sequence, Kyushu, Southern Japan
【24h】

Fault-Valve Behavior Estimated From Intensive Foreshocks and Aftershocks of the 2017 M 5.3 Kagoshima Bay Earthquake Sequence, Kyushu, Southern Japan

机译:2017 M 5.3鹿岛湾地震序列,九州,日本九州的密集血管和余震估计的故障阀行为

获取原文
获取原文并翻译 | 示例
           

摘要

Determining fluid migration and pore pressure change within the Earth is key to understand earthquake occurrences. We investigated the spatiotemporal characteristics of the intense foreshocks and aftershocks of the 2017 M-L 5.3 earthquake in Kagoshima Bay, Kyushu, southern Japan, to examine the physical processes governing this earthquake sequence. Our relocated hypocenters show the foreshocks moved on a sharply defined plane with a steep dip. The mainshock rupture initiated at the edge of the foreshock seismic gap. The size of the foreshock seismic gap is comparable to that of the mainshock estimated from the source corner frequency, suggesting this seismic gap corresponds to the large slip region of the mainshock. The aftershocks migrated upward along several steeply dipped planes with a seismicity pattern that deviated from the typical mainshock-aftershock type. This deviation of seismicity pattern, together with the hypocenter migrations, suggests aseismic processes, such as pore pressure migration and aseismic slip, affected this earthquake sequence. We established the following hypothesis. First, fluids originating from the subducting slab migrated upward and intruded into the fault plane, reducing the fault strength and causing the foreshock sequence and potentially aseismic slip. Second, the mainshock rupture occurred due to the decreased fault strength and the increased shear stress in an area with relatively high strength. Third, pore pressure increase associated with post-failure fluid discharge caused the upward aftershock migration. These observations are consistent with the fault-valve model and show the importance of fluid movement at depth not only in earthquake swarms but also in foreshock-mainshock-aftershock sequences.
机译:确定地球内部的流体迁移和孔隙压力变化是理解地震发生的关键。我们研究了2017年日本南部九州鹿儿岛湾5.3级M-L地震的强烈前震和余震的时空特征,以检验控制该地震序列的物理过程。我们重新定位的震源显示,前震在一个急剧倾斜的平面上移动。主震破裂开始于前震地震间隙的边缘。前震地震间隙的大小与根据震源角频率估计的主震的大小相当,表明该地震间隙对应主震的大滑移区。余震沿着几个陡倾平面向上移动,其地震活动模式与典型的主震余震类型不同。这种地震活动模式的偏差,以及震源迁移,表明孔隙压力迁移和抗震滑动等抗震过程影响了该地震序列。我们建立了以下假设。首先,来自俯冲板块的流体向上运移,侵入断层面,降低断层强度,导致前震序列和潜在的抗震滑动。第二,主震破裂是由于断层强度降低,剪切应力在一个强度相对较高的区域增加。第三,与破裂后流体排放相关的孔隙压力增加导致了向上的余震迁移。这些观测结果与断层阀模型一致,表明了流体运动在深度上的重要性,不仅在震群中,而且在前震主震余震序列中。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号