首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Graph-Space Optimal Transport Concept for Time-Domain Full-Waveform Inversion of Ocean-Bottom Seismometer Data: Nankai Trough Velocity Structure Reconstructed From a 1D Model
【24h】

Graph-Space Optimal Transport Concept for Time-Domain Full-Waveform Inversion of Ocean-Bottom Seismometer Data: Nankai Trough Velocity Structure Reconstructed From a 1D Model

机译:用于时域全波形反演的图形空间最优传输概念海底地震表数据:从1D模型重建Nankai槽速度结构

获取原文
获取原文并翻译 | 示例
           

摘要

Detailed reconstruction of deep structures with full-waveform inversion (FWI) of wide-angle ocean-bottom seismometer (OBS) data remains challenging and unconventional. The complexity of the long-offset waveforms increases the nonlinearity of the inverse problem, while the sparsity of the OBS deployments leads to a poorly constrained model reconstruction. Consequently, for such a FWI setting it is difficult to derive an initial model that satisfies the cycle-skipping criterion. Searching for a remedy to this issue, we investigate the graph-space optimal transport (GSOT) technique, which can potentially overcome the cycle-skipping problem at the initial FWI stage. The key feature of the GSOT cost function is the convexity with respect to the patterns in the two seismograms, which allows for correct matching of the arrivals shifted in time for more than half of the wavelet. This in turn shall allow FWI to handle the large kinematic errors of the starting model. We test this hypothesis by applying the time-domain acoustic FWI to the synthetic and field data from the subduction zone environment. We show that despite the complexity of the geological structure, the GSOT misfit function is able to guide the FWI toward the precise velocity model reconstruction and data fitting starting from a simple 1D model. The improved convexity of the GSOT misfit function allows FWI to converge even when mismatches between the observed and synthetic signals reach a few cycles. This ability reduces the constraint on the kinematic accuracy of the initial model and makes the FWI from the OBS data more feasible.
机译:利用广角海底地震仪(OBS)数据的全波形反演(FWI)对深部结构进行详细重建仍然是一项具有挑战性和非常规的工作。长偏移量波形的复杂性增加了反问题的非线性,而OBS部署的稀疏性导致模型重建约束较差。因此,对于这种FWI设置,很难导出满足循环跳过标准的初始模型。为了解决这个问题,我们研究了图空间最优传输(GSOT)技术,它可以潜在地克服FWI初始阶段的周期跳跃问题。GSOT代价函数的关键特征是两个地震图中模式的凸性,这允许对超过一半的子波进行时间偏移的到达波进行正确匹配。这反过来将允许FWI处理启动模型的较大运动误差。我们通过将时域声学FWI应用于俯冲带环境的合成和现场数据来验证这一假设。我们表明,尽管地质结构复杂,但GSOT失配函数能够引导FWI从简单的一维模型开始,进行精确的速度模型重建和数据拟合。GSOT失配函数的改进凸性允许FWI收敛,即使观测信号和合成信号之间的失配达到几个周期。这种能力减少了对初始模型运动学精度的限制,并使OBS数据的FWI更加可行。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号