首页> 外文期刊>Online journal of biological sciences >The Time of Flooding Occurrence is Critical for Yield Production in Rice and Vary in a Genotype-Dependent Manner
【24h】

The Time of Flooding Occurrence is Critical for Yield Production in Rice and Vary in a Genotype-Dependent Manner

机译:发生洪水的时间对于在水稻中产量产生并以基因型依赖的方式而变化至关重要

获取原文
获取原文并翻译 | 示例
           

摘要

Flash floods occur in rainfed lowland and flood-prone areas and have a profound incidence on crop yield, which is tightly linked to worldwide food insecurity. The most flooding-threatened crop is rice. Under this condition, rice undergoes anoxic and post-anoxic shock that affects its growth, development capacity and ultimately causes an important grain yield loss. Therefore, the introduction of submergence-tolerant varieties in a flood-prone area was proposed as a preventive solution to limit these effects. Such a solution presents room for improvement and would benefit from a post-submergence management to ensure a better rice yield, yet remains to be defined. In this study, we assessed the effect of flooding on growth and yield of different rice varieties submerged at a different time of their developmental stage. We compared three rice varieties, namely Prachinburi 2 (PCR2), Kao Samer 1 (KSM1) and Neang Guang 5 (NG5), for their tolerance to 14 days of 50 cm depth submergence at 30, 60 and 90 Days After Germination (DAG). At 30 DAG, the recovery ability of KSM1 was restricted, showing decreased shoot dry mass and grain yield, whereas photo assimilate transport of PCR2 and NG5 was altered, resulting in high leaf nitrogen (N) concentration but lowgrain yield. Our data revealed that rice varieties were more tolerant to submergence at 60 and 90 DAG. In opposition to KSM1 and NG5 grain yield, PCR2 showed rapid recovery with a marked increase of shoot dry mass and grain yield. Taken together, our result indicates that de-submergence at late developmental stage promotes rice recovery and yield of tolerant variety. Gene discovery work is required to identify molecular players and pathways that are involved in submergence stress recovery in rice.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号