...
首页> 外文期刊>Modern Physics Letters, B. Condensed Matter Physics, Statistical Physics, Applied Physics >A general framework of high-resolution hybrid central/WENO numerical scheme for turbulent compressible simulation
【24h】

A general framework of high-resolution hybrid central/WENO numerical scheme for turbulent compressible simulation

机译:湍流可压缩模拟高分辨率混合中央/文戈数值方案的一般框架

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents a general framework of finite-difference hybrid scheme which contains a linear central scheme and a nonl-inear WENO scheme. A new optimal-designed shock sensor is used to distinguish the smoothness of flowfield and a binary-type weighting function is used to switch sub-schemes rationally. Based on the above improvements, the effects of different combinations of each component within the hybrid scheme are characterized in linear advection equation and Euler equations. The maximum reference threshold values are provided. Extensive test cases indicate the hybrid scheme's numerical robustness, low-dissipation, and superior computational efficiency. Specifically, benefited from the high-resolution shock sensor which can accurately perceive shocks without excessive misidentifications, the hybrid scheme can achieve non-oscillatory solutions, and resolve more vortices in smooth regions compared to the original shock-capturing scheme. Meanwhile, the superiority of the hybrid scheme is further confirmed in the Reynolds-averaged Navier-Stokes equations/Lager Eddy Simulations (RANS/LES) for the DLR scramjet combustor case with viscous terms and/or sub-grid scale models are used. The present hybrid framework can be easily implemented within the existing numerical simulation code framework.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号