首页> 外文期刊>Evolution: International Journal of Organic Evolution >Evidence of linked selection on the Z chromosome of hybridizing hummingbirds
【24h】

Evidence of linked selection on the Z chromosome of hybridizing hummingbirds

机译:杂交蜂鸣鸟Z染色体相关选择的证据

获取原文
获取原文并翻译 | 示例
           

摘要

Levels of genetic differentiation vary widely along the genomes of recently diverged species. What processes cause this variation? Here, I analyze geographic population structure and genome-wide patterns of variation in the Rufous, Allen's, and Calliope Hummingbirds (Selasphorus rufus/Selasphorus sasin/Selasphorus calliope) and assess evidence that linked selection on the Z chromosome drives patterns of genetic differentiation in a pair of hybridizing species. Demographic models, introgression tests, and genotype clustering analyses support a reticulate evolutionary history consistent with divergence during the late Pleistocene followed by gene flow across migrant Rufous and Allen's Hummingbirds during the Holocene. Relative genetic differentiation (F_(st)) is elevated, and within-population diversity (π) is depressed on the Z chromosome in all interspecific comparisons. The ratio of Z to autosomal within-population diversity is much lower than that expected from population size effects alone, and Tajima's D is depressed on the Z chromosome in S. rufus and S. calliope. These results suggest that conserved structural features of the genome play a prominent role in shaping genetic differentiation through the early stages of speciation in northern Selasphorus hummingbirds, and that the Z chromosome is a likely site of genes underlying behavioral andmorphological variation in the group.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号