...
首页> 外文期刊>Journal of Electronic Materials >Fabrication of Carbon-Doped Titanium Dioxide Nanotubes as Anode Materials for Photocatalytic Glucose Fuel Cells
【24h】

Fabrication of Carbon-Doped Titanium Dioxide Nanotubes as Anode Materials for Photocatalytic Glucose Fuel Cells

机译:碳掺杂二氧化钛纳米管作为光催化葡萄糖燃料电池的阳极材料制备

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, TiO_2 nanotubes (TNT) and carbon-doped TiO_2 nanotubes (C-TNT) were produced via the anodization method. Carbon doping was performed on TNT in a tubular oven employing two different 15 cm~3/min total flow rates with varying compositions of acetylene (C_2H_2) and argon (Ar) as VC_2H_2/Ar = 7/93 (1 cm~3/min C_2H_2 + 14 cm~3/min Ar) for C-TNT (7:93) and VC_2H_2/Ar = 33/67 (5 cm~3/min C_2H_2 + 10 cm~3/min Ar) for C-TNT (33:67). The synthesized C-doped TNT was characterized by x-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). XRD, Raman spectra, and SEM results reveal that a carbon film structure was formed on the TNT surface. In addition, the electronic structure of TNT changed with doping of carbon on the TNT surface. These carbon-doped TNTs were employed as catalysts for the photocatalytic oxidation of glucose (GA). Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements were carried out to investigate the glucose electro-oxidation activity of the carbon-doped TNTs in the dark and under UV illumination (λ = 354 nm). C-TNT (7:93) exhibited the highest glucose electro-oxidation activity under the dark and UV illumination compared to C-TNT (33:67) and TNT. The glucose electro-oxidation (GAEO) current density on C-TNT (7:93) improved significantly under UV illumination compared to glucose electro-oxidation activity obtained in the dark. C-TNT (7:93) enhanced glucose electro-oxidation activity and stability under UV illumination. This electrode production method is promising for the design of photocatalytic glucose fuel cells.
机译:本工作通过阳极氧化法制备了TiO_2纳米管(TNT)和碳掺杂TiO_2纳米管(C-TNT)。在管式烘箱中对TNT进行碳掺杂,采用两种不同的15 cm~3/min总流量,乙炔(C_2hu 2)和氩(Ar)的成分不同,其中C-TNT(7:93)采用VC_2hu 2/Ar=7/93(1 cm~3/min C_2hu 2+14 cm~3/min Ar),C-TNT(33:67)采用VC_2hu 2/Ar=33/67(5 cm~3/min C_2hu 2+10 cm~3/min Ar)。通过x射线衍射(XRD)、拉曼光谱和扫描电子显微镜(SEM)对合成的C掺杂TNT进行了表征。XRD、拉曼光谱和SEM结果表明,TNT表面形成了碳膜结构。此外,随着碳在TNT表面的掺杂,TNT的电子结构也发生了变化。这些碳掺杂的TNT被用作光催化氧化葡萄糖(GA)的催化剂。通过循环伏安法(CV)、计时电流法(CA)和电化学阻抗谱(EIS)测量,研究了碳掺杂TNT在黑暗和紫外光照射下(λ=354nm)的葡萄糖电氧化活性。与C-TNT(33:67)和TNT相比,C-TNT(7:93)在黑暗和紫外线照射下表现出最高的葡萄糖电氧化活性。与在黑暗中获得的葡萄糖电氧化活性相比,在紫外光照射下C-TNT(7:93)上的葡萄糖电氧化(GAEO)电流密度显著提高。C-TNT(7:93)增强了葡萄糖在紫外光照射下的电氧化活性和稳定性。这种电极制备方法有望用于光催化葡萄糖燃料电池的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号