首页> 外文期刊>ACS applied materials & interfaces >Microstructure Determines Water and Salt Permeation in Commercial Ion-Exchange Membranes
【24h】

Microstructure Determines Water and Salt Permeation in Commercial Ion-Exchange Membranes

机译:微观结构在商业离子交换膜中确定水和盐渗透

获取原文
获取原文并翻译 | 示例
           

摘要

Ion-exchange membrane (IEM) performance in electrochemical processes such as fuel cells, redox flow batteries, or reverse electrodialysis (RED) is typically quantified through membrane selectivity and conductivity, which together determine the energy efficiency. However, water and co-ion transport (i.e., osmosis and salt diffusion/fuel crossover) also impact energy efficiency by allowing uncontrolled mixing of the electrolyte solutions to occur. For example, in RED with hypersaline water sources, uncontrolled mixing consumes 20-50% of the available mixing energy. Thus, in addition to high selectivity and high conductivity, it is desirable for IEMs to have low permeability to water and salt to minimize energy losses. Unfortunately, there is very little quantitative water and salt permeability information available for commercial IEMs, making it difficult to select the best membrane for a particular application. Accordingly, we measured the water and salt transport properties of 20 commercial IEMs and analyzed the relationships between permeability, diffusion, and partitioning according to the solution-diffusion model. We found that water and salt permeance vary over several orders of magnitude among commercial IEMs, making some membranes better suited than others to electrochemical processes that involve high salt concentrations and/or concentration gradients. Water and salt diffusion coefficients were found to be the principal factors contributing to the differences in permeance among commercial IEMs. We also observed that water and salt permeability were highly correlated to one another for all IEMs studied, regardless of polymer type or reinforcement. This finding suggests that transport of mobile salt in IEMs is governed by the microstructure of the membrane and provides clear evidence that mobile salt does not interact strongly with polymer chains in highly swollen IEMs.
机译:在诸如燃料电池,氧化还原流量电池或反向电渗析(红色)之类的电化学过程中的离子交换膜(IEM)性能通常通过膜选择性和电导率来定量,其共同确定能量效率。然而,通过允许发生电解质溶液的不受控制混合,通过允许发生电解质溶液的不受控制混合来影响能量效率的水和共离子转运(即,渗透和扩散/燃料交叉)。例如,用纯净水源的红色,不受控制的混合消耗20-50%的可用混合能量。因此,除了高选择性和高导电性之外,还希望IEM具有低于水和盐的低渗透性,以最小化能量损失。不幸的是,可以为商业IEMS提供非常少的定量水和盐渗透性信息,使得难以为特定应用选择最佳膜。因此,我们测量了20个商业IEM的水和盐传输性能,并根据溶液扩散模型分析了渗透率,扩散和分配之间的关系。我们发现,商业IEM中的水和盐渗透物在几个数量级上变化,使得一些比其他膜更适合涉及高盐浓度和/或浓度梯度的电化学过程。发现水和盐扩散系数是有助于商业IEM之间渗透差异的主要因素。我们还观察到,无论聚合物类型还是增强,水和渗漏性与彼此的彼此高度相关。该发现表明,IEM中的移动盐的运输受到膜的微观结构的管辖,并提供了明确的证据,即移动盐不会在高度肿胀的IEM中与聚合物链强烈相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号