...
首页> 外文期刊>ACS applied materials & interfaces >Nanoscale Core-Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation
【24h】

Nanoscale Core-Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation

机译:超级阈值激光动作的纳米级核心壳双曲结构:一种有效的光学操作增强平台

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmonic material has emerged with multifunctionalities for its remarkable tailoring light emission, reshaping density of states (DOS), and focusing subwavelength light. However, restricted by its propagation loss and narrowband resonance in nature, it is a challenge for plasmonic material to provide a broadband DOS to advance its application. Here, we develop a novel nanoscale core-shell hyperbolic structure that possesses a remarkable coupling effect inside the multishell nanoscale composite owing to a higher DOS and a longer time of collective oscillations of the electrons than the plasmonic-based pure-metal nanoparticles. Subsequently, a giant localized electromagnetic wave of surface plasmon resonance is formed at the surface, causing pronounced out-coupling effect. Specifically, the nanoscale core-shell hyperbolic structure confines the energy well without being decayed, reducing the propagation loss and then achieving an unprecedented stimulated emission (random lasing action by dye molecule) with a record ultralow threshold (similar to 30 mu J/cm(2)). Besides, owing to the radial symmetry of the nanoscale core-shell hyperbolic structure, the excitation of high wavevector modes and induced additional DOS are easily accessible. We believe that the nanoscale core-shell hyperbolic structure paves a way to enlarge the development of plasmonic-based applications, such as high optoelectronic conversion efficiency of solar cells, great power extraction of light-emitting diodes, wide spectra photodetectors, carrying the emitter inside the core part as quantitative fluorescence microscopy and bioluminescence imaging system for in vivo and in vitro research on human body.
机译:具有多功能性的多功能性,用于其显着的剪裁光发射,销下状态(DOS)和聚焦亚波长光。然而,限制其本质上的传播损耗和窄带共振,这是诸如等离子体材料提供宽带DOS推进其应用的挑战。在这里,我们开发一种新型纳米级核心壳双曲线结构,其由于较高的DOS和较长时间的基于等离子体基纯金属纳米颗粒而具有更高的组合和较长的集体振荡的时间,具有较大的多机器纳米级复合材料的耦合效果。随后,在表面形成表面等离子体共振的巨型局部电磁波,从而引起发音的外耦合效果。具体地,纳米级核心壳双曲线结构在不衰减的情况下局限质地限制了能量,降低了传播损失,然后通过记录超声阈值实现了前所未有的刺激(染料分子随机激光作用)(类似于30μJ/ cm( 2))。此外,由于纳米级核心 - 壳双曲线结构的径向对称性,易于接近高波波模式的激励和诱导额外的DOS。我们认为纳米级核心壳双曲线结构铺设了一种方法来扩大基于等离子体的应用的发展,例如太阳能电池的高光电转换效率,发光二极管的强大功率提取,宽谱光电探测器,内部携带发射极核心部分作为体内和体外研究的定量荧光显微镜和生物发光成像系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号