...
首页> 外文期刊>ACS nano >Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells
【24h】

Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells

机译:通过从石墨烯量子点到高效的钙钛矿太阳能电池,通过电子转移增强了SnO 2 的电子性质

获取原文
获取原文并翻译 | 示例
           

摘要

Tin dioxide (SnO2) has been demonstrated as an effective electron-transporting layer (ETL) for attaining high-performance perovskite solar cells (PSCs). However, the numerous trap states in low-temperature solution processed SnO2 will reduce the PSCs performance and result in serious hysteresis. Here, we report a strategy to improve the electronic properties in SnO2 through a facile treatment of the films with adding a small amount of graphene quantum dots (GQDs). We demonstrate that the photogenerated electrons in GQDs can transfer to the conduction band of SnO2. The transferred electrons from the GQDs will effectively fill the electron traps as well as improve the conductivity of SnO2, which is beneficial for improving the electron extraction efficiency and reducing the recombination at the ETLs/perovskite interface. The device fabricated with SnO2:GQDs could reach an average power conversion efficiency (PCE) of 19.2 ± 1.0% and a highest steady-state PCE of 20.23% with very little hysteresis. Our study provides an effective way to enhance the performance of perovskite solar cells through improving the electronic properties of SnO2.]]>
机译:<!图像/介质/ NN-2017-04070A_0006.GIF“>二氧化锡(SNO 2 )被证明为有效的电子传输层(ETL),用于获得高性能钙钛矿太阳能电池(PSC) 。然而,低温溶液中的众多陷阱状态加工SnO 2 将降低PSCS性能并导致严重的滞后。在这里,我们报告了通过添加少量石墨烯量子点(GQDS)的薄膜的容纳处理来改善SnO 2 中的电子特性的策略。我们证明GQD中的光静电电子可以转移到SnO 2 的导通带。来自GQD的转移电子将有效地填充电子疏水阀,以及改善SnO 2 的导电性,这有利于提高电子提取效率并在EtLS / Perovskite界面处减少重组。用SnO 2 制造的装置:GQD可以达到19.2±1.0%的平均功率转换效率(PCE),最高稳态PCE为20.23%,滞后很小。我们的研究提供了一种有效的方法,通过改善SnO 2 的电子性质来增强钙钛矿太阳能电池的性能。]>

著录项

  • 来源
    《ACS nano》 |2017年第9期|共7页
  • 作者单位

    State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China;

    State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China;

    State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China;

    State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China;

    Center for Optoelectronics Materials and Devices Department of Physics Zhejiang Sci-Tech University Hangzhou 310018 China;

    Center for Optoelectronics Materials and Devices Department of Physics Zhejiang Sci-Tech University Hangzhou 310018 China;

    State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China;

    Center for Optoelectronics Materials and Devices Department of Physics Zhejiang Sci-Tech University Hangzhou 310018 China;

    Center for Optoelectronics Materials and Devices Department of Physics Zhejiang Sci-Tech University Hangzhou 310018 China;

    Center for Optoelectronics Materials and Devices Department of Physics Zhejiang Sci-Tech University Hangzhou 310018 China;

    State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    electron transfer; electron traps; graphene quantum dots; perovskite solar cells; tin dioxide;

    机译:电子转移;电子陷阱;石墨烯量子点;钙钛矿太阳能电池;二氧化锡;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号