首页> 外文期刊>ACS nano >Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components
【24h】

Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components

机译:多功能红细胞的仿生重建:使用功能部件的模块化设计

获取原文
获取原文并翻译 | 示例
       

摘要

The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.
机译:模拟生物细胞结构,机械性能和最终函数的人造材料的设计和合成仍然是目前的材料科学圣杯。在这里,基于二氧化硅细胞生物拼相方法,我们报告了合成重建红细胞(RRBC)的设计和构建,完全模仿天然RBC的广泛性质:尺寸,双凸形,可变形性,氧气承载能力和长循环时间。 RRBC结构采用四个连续的纳米级处理步骤(RBC生物拼相,层层聚合物沉积和精密二氧化硅蚀刻,其次是RBC Ghost膜囊泡融合。包括Zeta电位测量,荧光显微镜和抗体介导的凝集测定的物理化学分析组证明了RBC形状,尺寸和膜结构的综合。在微流体血液毛细血管模型中进行的基于流动的变形研究证实了RRBC变形和通过小狭缝的能力,并以与天然RBC相当的方式重建自己。 RRBCS在小鼠胚胎中进行的RRBC的循环研究在小鼠模型中在小鼠模型中进行了易变形性和天然细胞膜表面的要求,以实现长期循环。为了赋予RRBC的额外非本地功能,我们开发了模块化程序,其中血红蛋白,药物,磁性纳米粒子和ATP在RRBC内部内的血红蛋白,药物,磁性纳米粒子和ATP生物传感器等模块化程序,以实现各种功能,包括氧输送,治疗药物递送,磁性操纵和毒素生物传感和检测。连合在一起,RRBC代表一类长循环的RBC启动人造混合材料,具有广泛的潜在应用。

著录项

  • 来源
    《ACS nano》 |2020年第7期|共13页
  • 作者单位

    Univ New Mexico Ctr Microengn Mat Dept Chem &

    Biol Engn Albuquerque NM 87131 USA;

    Univ New Mexico Ctr Microengn Mat Dept Chem &

    Biol Engn Albuquerque NM 87131 USA;

    Univ New Mexico Dept Internal Med Mol Med Albuquerque NM 87131 USA;

    Univ New Mexico Dept Internal Med Mol Med Albuquerque NM 87131 USA;

    South China Univ Technol Sch Biol &

    Biol Engn Guangzhou 510006 Guangdong Peoples R China;

    Univ New Mexico Dept Biochem &

    Mol Biol Albuquerque NM 87131 USA;

    Univ New Mexico Ctr Microengn Mat Dept Chem &

    Biol Engn Albuquerque NM 87131 USA;

    Univ New Mexico Ctr Microengn Mat Dept Chem &

    Biol Engn Albuquerque NM 87131 USA;

    Sandia Natl Labs Nanobiol Dept POB 5800 Albuquerque NM 87185 USA;

    South China Univ Technol Sch Biol &

    Biol Engn Guangzhou 510006 Guangdong Peoples R China;

    Univ New Mexico Ctr Microengn Mat Dept Chem &

    Biol Engn Albuquerque NM 87131 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    red blood cells; biomimicry; drug carrier; multifunction; bioapplications;

    机译:红细胞;生物化;药物载体;多功能;生物缺陷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号