首页> 外文期刊>SIAM Journal on Scientific Computing >NUMERICAL METHODS FOR INTERFACE COUPLING OF COMPRESSIBLE AND ALMOST INCOMPRESSIBLE MEDIA
【24h】

NUMERICAL METHODS FOR INTERFACE COUPLING OF COMPRESSIBLE AND ALMOST INCOMPRESSIBLE MEDIA

机译:可压缩和几乎不可压缩介质的界面耦合的数值方法

获取原文
获取原文并翻译 | 示例
           

摘要

Many experiments in biomedical applications and other disciplines use a shock tube. These experiments often involve placing an experimental sample within a fluid-filled container, which is then placed inside the shock tube. The shock tube produces an initial shock that propagates through gas before hitting the container with the sample. In order to gain insight into the shock dynamics that is hard to obtain by experimental means, computational simulations of the shock wave passing from gas into a thin elastic solid and into a nearly incompressible fluid are developed. It is shown that if the solid interface is very thin, it can be neglected, simplifying the model. The model uses Euler equations for compressible fluids coupled with a Tammann equation of state (EOS) to model both compressible gas and almost incompressible materials. A three-dimensional (two-dimensional axisymmetric) model of these equations is solved using high-resolution shock-capturing methods, with newly developed Riemann solvers and limiters. The methods are extended to work on a mapped grid to allow more complicated interface geometry, and they are adapted to work with adaptive mesh refinement (AMR) for higher resolution and faster computations. The Clawpack software is used to implement the method. These methods were initially inspired by shock tube experiments to study the injury mechanisms of traumatic brain injury (TBI).
机译:生物医学应用和其他学科的许多实验使用了震炮。这些实验通常涉及将实验样品放置在填充流体的容器内,然后将其放置在冲击管内。震动管产生初始冲击,在用样品击中容器之前通过气体传播。为了深入了解难以通过实验方法获得的冲击动态,开发了从气体进入薄的弹性固体并进入几乎不可压缩的流体中的减震波的计算模拟。结果表明,如果固体界面非常薄,可以忽略它,简化模型。该模型利用欧拉方程用于可压缩流体,该压缩流体与状态(EOS)的Tammann方程联接,以模拟可压缩气体和几乎不可压缩的材料。使用高分辨率冲击捕获方法解决了这些方程的三维(二维轴对称)模型,具有新开发的Riemann求解器和限制器。扩展了该方法以在映射网格上工作,以允许更复杂的界面几何形状,并且它们适用于适应性网格细化(AMR),以获得更高的分辨率和更快的计算。 CLAWPACK软件用于实现该方法。这些方法最初受到冲击管实验的启发,以研究创伤性脑损伤(TBI)的损伤机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号