...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Extending RAPID model to simulate forest microwave backscattering
【24h】

Extending RAPID model to simulate forest microwave backscattering

机译:扩展快速模型以模拟森林微波反向散射

获取原文
获取原文并翻译 | 示例
           

摘要

The retrieval of vegetation parameters benefits significantly from the data fusion of optical and microwave signals. The integration of accurate forward models in both regions can play an important role in supporting these fusion approaches. Because of the different imaging mechanisms used in optical and microwave wavelength domains, the forward models in the two domains have been generally developed separately based on the different specifications of the scene. The inconsistencies between optical and microwave models, such as confusing input/output parameter definitions, different scattering theories and discrepant model complexity, make the data fusion difficult to conduct and lead to different results in terms of accuracy and computer time. Therefore, it is of great interest to develop a unified three-dimensional (3D) model using one scattering theory, identical input and similar complexity. To our knowledge, there are very few 3D models that can accomplish this task. By extending the Radiosity Applicable to Porous IndiviDual Objects (RAPID) model for the optical region, a general radiosity model (RAPID2) was proposed in this paper for the microwave region. This is the first time radiosity theory has been applied in microwave remote sensing, which invents a new way to solve the radar multiple scattering more efficiently. RAPID2 has four new functions: projecting translucent objects, tracking specular scattering, separating polarization components and imaging radar signals. The relationship between the radar cross section (RCS) and the bi-directional reflectance factor (BRF) is bridged. The modified Stokes vector and Mueller matrix are integrated into radiosity formulas to unify the scattering process between the optical and microwave regions. RAPID2 can simulate double-bouncing and multiple scattering effects over vegetated 3D scenes containing topography. The simulated radar images can well reflect the distinct radar geometric features, including layover, foreshortening and shadows. Validation over two forest sites shows good agreement with AIRSAR backscattering data (errors 3.4 dB). The demonstrated results show the importance of the incident azimuth angle (variation up to 2 dB), slope (variation up to 5 dB), and multiple scattering effects (contribution up to 2 dB), which should be considered in forest parameter inversion.
机译:从光学和微波信号的数据融合,植被参数的检索显着益处。在两个地区的准确前进模型的整合可以在支持这些融合方法方面发挥重要作用。由于光学和微波波长域中使用的不同成像机制,两个域中的前向模型通常基于场景的不同规格分别开发。光学和微波模型之间的不一致性,例如混淆输入/输出参数定义,不同的散射理论和差异模型复杂性,使得数据融合难以进行,并在准确性和计算机时间方面导致不同的结果。因此,利用一个散射理论,相同的输入和类似的复杂性开发统一的三维(3D)模型是非常兴趣的。为我们的知识,有很多3D模型可以完成这项任务。通过延长适用于光学区域的多孔单个物体(快速)模型的放透,本文提出了一般的光纤型(Rapid2),用于微波区。这是第一次通过微波遥感方式应用的最热化理论,这引起了一种更有效地解决雷达多次散射的新方法。 Rapid2有四个新功能:投影半透明物体,跟踪镜面散射,分离偏振分量和成像雷达信号。雷达横截面(RCS)与双向反射率因数(BRF)之间的关系桥接。修改的斯托克斯矢量和穆勒基质被集成到光纤公式中,以统一光学和微波区之间的散射过程。 Rapid2可以模拟含有地形的植被3D场景的双弹奏和多种散射效果。模拟的雷达图像可以很好地反映不同的雷达几何特征,包括解放,缩短和阴影。在两个森林网站上的验证显示了与Airsar反向散射数据(错误<3.4 dB)良好的协议。所证明的结果表明,入射方位角(变化高达2 dB)的重要性,斜率(高达5 dB)和多种散射效果(贡献高达2 dB),应该在森林参数反演中考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号