首页> 外文期刊>Nature reviews neuroscience >Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils
【24h】

Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils

机译:来自冷冻连接纤维素纳米纤维的交联和可塑性多孔3D基材

获取原文
获取原文并翻译 | 示例
           

摘要

Chemically cross-linked highly porous nano cellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 mu m thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.
机译:使用避免交联反应和冷冻干燥的共同激活和冷冻干燥的共同激活和冷冻干燥的化学交联的具有复杂形状的高度多孔纳米纤维素气凝胶。气凝胶形状范围从简单的几何三维身体到漩涡和螺线管。这是通过模塑或挤出在常规冰箱中的化学交联之前的氧化纤维素纳米纤维(CNF)分散的氧化纤维素纳米纤维(CNF)分散体来实现,或者通过将已经制备的气凝胶塑化在水中塑化,然后重塑并将气凝胶塑化成其新形状。新形状最有可能通过在重塑期间通过变形接触的CNF之间形成的新交叉链接来保留。这种自我愈合能力在塑化和Redrying后形成新键也有助于气孔的机械弹性,使它们在干燥状态下循环地变形,用水重新擦拭,并重新定位良好的机械完整性。此外,通过利用空气凝胶的可行性和可用的内部结构,螺线管形气凝胶具有涂覆有薄膜的薄膜的所有表面能够在螺线管内产生磁场,证明电磁特性。此外,通过生物剥削Toucan鸟喙的多孔内部和刚性外部,通过在其模制的外表面上施加300μm厚的抗蜡涂层来产生官能化的气凝胶。与普通气凝胶的相比,该复合材料显示出10倍的弹性模量,而不会急剧增加密度。这些实施例表明,可以将先进的成形与气凝胶的内部结构和表面的功能化相结合,从根本上延伸了可能的CNF气凝胶。

著录项

  • 来源
    《Nature reviews neuroscience》 |2019年第2期|共10页
  • 作者单位

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth Dept Fibre &

    Polymer Technol Div;

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth Dept Fibre &

    Polymer Technol Div;

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth Dept Fibre &

    Polymer Technol Div;

    RISE Bioecon Papermaking &

    Packaging Box 5604 SE-11486 Stockholm Sweden;

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth Dept Fibre &

    Polymer Technol Div;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号